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Abstract
We find that the modified sine-Gordon equation belonging to the class of
the soliton equations describes the propagation of extremely short transverse
acoustic pulses through the low-temperature crystal containing paramagnetic
impurities with effective spin S = 1

2 in the Voigt geometry case. The features
of nonlinear dynamics of strain field and effective spins, which correspond to
the different kinds of acoustic solitons, are studied.

PACS numbers: 05.45.Yv, 43.35.+d, 02.30.Ik

The development of physical acoustics has led to the appearance of technical tools of producing
and measuring acoustic pulses about 10–102 ps in duration [1, 2]. The characteristics of such
pulses are very perspective for diagnostics of fast processes and spectroscopy of solids. This
attracts large attention to theoretical study of the interaction of picosecond acoustic pulses with
paramagnetic crystals and other nonlinear media [3–8]. Usually, the semiclassical approach
is employed to derive the equations governing the evolution of acoustic pulses. Some of these
equations occur to be integrable with the help of the inverse scattering transformation (IST)
method [9, 10]. In particular, the systems of integrable equations that generalize well-known
integrable models of nonlinear coherent optics [11] describe the propagation of transverse-
longitudinal picosecond pulses [6, 7].

The duration of picosecond acoustic pulses may be comparable with the oscillation
period of the quantum transitions involved into the interaction. Following well-known
parallels between the nonlinear phenomena in coherent optics and physical acoustics [12,
13], one has to treat acoustic pulses in this case as extremely short pulses [11, 14]. However,
it is necessary in so doing to take into account essential difference between acoustic and
optical waves. The linear velocities of the components of the former can differ significantly
[15]. Thus, the longitudinal component velocity is normally much higher than the transverse
ones. The nonlinear interaction of these components is weak in that case, and, consequently,
longitudinal and transverse picosecond acoustic pulses propagate independently. At the same
time, transverse components can interact efficiently since their linear velocities are equal under
propagation along the acoustic symmetry axis of the crystal.
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In this paper, we investigate the nonlinear dynamics of the acoustic extremely short
pulses in the low-temperature paramagnetic crystal in the external magnetic field presence. In
accordance with above-mentioned parallels between coherent optics and physical acoustics,
we apply here the spectral overlap approximation [16]. This approximation is based on
condition

ε ≡ (ω0τp)2 � 1, (1)

where ω0 is the characteristic frequency of quantum transitions created by the external field
and τp is the pulse duration. The main aim of the present communication is to clarify the role
of nonlinear interaction of the acoustic pulse components. We suppose for this reason that the
pulses are especially transverse.

Let a tetragonal (or cubic) crystal contain paramagnetic impurities with effective spin
S = 1

2 . Assume that the Cartesian axes x, y and z are aligned with symmetry axes of the
crystal. Let the transverse acoustic pulse propagate along the x axis and the external magnetic
field B be parallel to the z axis (Voigt geometry). Consider the one-dimensional case with
dynamical variables depending on coordinate x and time t only. Then, the Hamiltonian Ĥ of
the spin-elastic interaction has the form [13]

Ĥ = −h̄ω0

2
[σ̂ z + F44Eyx σ̂ y + F55Ezx σ̂ z]. (2)

Here ω0 = gµBB/h̄ is the frequency of the Zeeman splitting of the Kramers doublets, g is
the Lande factor, µB is the Bohr magneton, B = |B|; Eyx = ∂uy/∂x and Ezx = ∂uz/∂x

are the components of the strain tensor, uy and uz are the Cartesian components of the
local displacement vector u, F44 = g−1(∂gyx/∂Eyx)0 and F55 = g−1(∂gzx/∂Ezx)0 are the
components of the tensor of the spin-elastic interaction (in Voigt notation, subscript ‘0’ means
differentiation at the absence of acoustic pulse), gjk are the components of the Lande tensor,
σ̂ y and σ̂ z are the Pauli matrices, and h̄ is the Planck constant. From the microscopic point of
view, the spin-elastic coupling appears in the case S = 1

2 due to the modulation of the Lande
tensor components by the strain field [13].

In order to achieve fairly efficient interaction between paramagnetic impurities and strain
field, the Zeeman splitting energy must exceed the thermal one. This implies that paramagnetic
crystal has to be at helium temperatures, as was in the experiments on acoustic self-induced
transparency [12]. In that case, the self-absorption of hypersound with frequency 102 GHz (or
the picosecond acoustic pulses) due to anharmonicity, defects, etc is appreciably lower than
the acoustic absorption due to the presence of paramagnetic impurities [13]. Hence, the self-
absorption effect playing an important role under the room temperatures can be ignored in our
case. Also, characteristic phase relaxation time for transitions within the Zeeman multiplets
is 10−5–10−6 s, and the energy relaxation time is much longer under such conditions [12]. We
neglect these dissipative effects in what follows because the duration of the pulses considered
is much shorter than all the relaxation times.

According to the general scheme of the semiclassical approach, we describe the evolution
of effective spins by the equation on density matrix ρ̂:

ih̄
∂ρ̂

∂t
= [Ĥ , ρ̂]. (3)

On the other hand, the elastic pulse field obeys the classical Hamiltonian equation for
continuous medium

∂p

∂t
= − δ

δu

(
Ha +

∫
n〈Ĥ 〉 dr

)
, (4)
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∂u

∂t
= δ

δp

(
Ha +

∫
n〈Ĥ 〉 dr

)
, (5)

where p is the momentum density of the local displacement of the crystal,

Ha = 1

2

∫ [
p2

y + p2
z

ρ
+ ρa2

(
E2

yx + E2
zx

)]
dr (6)

is the Hamiltonian of the free strain field, ρ is the average density of the crystal, n is the
concentration of paramagnetic ions, 〈Ĥ 〉 = Tr(ρ̂Ĥ ) is the quantum average value of Ĥ , and
a is the linear velocity of transverse acoustic waves. The integration is carried out over the
crystal volume.

Let us introduce the Bloch variables

U = ρ21 + ρ12

2
, V = ρ21 − ρ12

2i
, W = ρ22 − ρ11

2
,

where ρjk (j, k = 1, 2) are the elements of the density matrix. Then (3) gives

∂U

∂t
= (ω0 + �z)V + �yW, (7)

∂V

∂t
= −(ω0 + �z)U, (8)

∂W

∂t
= −�yU, (9)

where

�y = ω0F44Eyx, �z = ω0F55Ezx .

With (2), (4)–(6), we obtain

∂2�y

∂t2
− a2 ∂2�y

∂x2
= −nh̄ω2

0F
2
44

4ρ

∂2V

∂x2
, (10)

∂2�z

∂t2
− a2 ∂2�z

∂x2
= nh̄ω2

0F
2
55

4ρ

∂2W

∂x2
. (11)

Equations (7)–(11) describe the interaction of the transverse strain field with the
paramagnetic crystal in the Voigt geometry case. As is seen from (7)–(9), y component
�y of the acoustic pulse causes quantum transitions between the Zeeman sublevels, whereas z

component �z shifts dynamically their frequency. For transverse acoustic pulse propagating
along the z axis (Faraday geometry), both components of the pulse excite quantum transitions
only. The spin-elastic interaction between the components leads in this case to the rotation of
the polarization plane of the pulse [4] (acoustic Faraday effect).

If we put

S = W + iU,

then (7) and (9) yield

∂S

∂t
= i(ω0 + �z)V + i�yS. (12)

Let us assume that τp ∼ 10 ps and the orders of ω0 and �z are comparable. Taking
ω0 ∼ 1010 s−1 (that is B ∼ 103 Gs) [4, 12, 13], we see that condition (1) is valid. In
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this case, the first term on the rhs of (12) can be neglected in the approximation of zeroth order
with respect to ε [17]. Then we have

S = W0 eiθ ,

or

U = W0 sin θ, W = W0 cos θ, (13)

where

θ =
∫ t

t0

�y dt ′, (14)

W0 (|W0| � 1/2) is the inversion of population of the spin sublevels in the acoustic pulse
absence. Substituting (13) into (8) gives

∂V

∂t
= −W0(ω0 + �z) sin θ. (15)

To simplify further the equations we deal with, let us carry out some numerical estimations.
Assuming W ∼ U, ∂/∂t ∼ 1/τp, we find from (9) that �y ∼ 1/τp. Therefore, the ratio ηy

of the rhs of equation (10) to the terms on its lhs is estimated as ηy ∼ √
εnh̄ω0F

2
44

/
4ρa2.

The value of the similar parameter of (11) is estimated as ηz ∼ √
εnh̄ω0F

2
55

/
4ρa2. For

paramagnetic ions Co2+ in cubic crystal MgO at helium temperatures, we use the following
experimental data [4, 13]: n ∼ 1019 cm−3, ω0 ∼ 1010 s−1, ρ ∼ 1 g cm−3, a ∼ 5 · 105 cm s−1

and F44 ∼ F55 ∼ 103. If τp ∼ 10−11 s, then ηy ∼ ηz ∼ 10−2. Since parameters ηy and ηz are
much less than unity, we shall reduce the order of derivatives in (10) and (11) with the help of
the unidirectional propagation approximation [18].

Having introduced new independent variables τ = t − x/a and ζ = ηx, where
η = max(ηy, ηz), we obtain

∂

∂t
= ∂

∂τ
,

∂

∂x
= −1

a

∂

∂τ
+ η

∂

∂ζ
.

In the first order in η, we write

∂2

∂x2
≈ 1

a2

∂2

∂τ 2
− 2

η

a

∂2

∂τ∂ζ
,

∂2

∂x2
≈ 1

a2

∂2

∂τ 2
,

for the lhs and rhs of equations (10) and (11), respectively. Integration of the wave equations
obtained in this way with respect to τ , substitution of expressions (13) and taking into account
(15) give us the following system in terms of the variables τ and x:

∂�y

∂x
= −βy(ω0 + �z) sin θ, (16)

∂�z

∂x
= βz�y sin θ, (17)

where βy = −W0nh̄ω2
0F

2
44

/
(8ρa3), βz = βyF

2
55

/
F 2

44.
Equations (16) and (17) possess the integral of motion:

�2
z + 2ω0�z +

F 2
55

F 2
44

�2
y = f (τ), (18)

where the function f (τ) is determined by the boundary conditions. The similar integral was
revealed in [7]. Defining new variables

τ ′ =
∫ τ

0

√
1 + f (τ̃ )

/
ω2

0 dτ̃ ,
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�′
y = �y√

1 + f (τ)
/
ω2

0

,

�′
z = ω0 + �z√

1 + f (τ)
/
ω2

0

− ω0,

one can prove that f (τ) is supposed equal to zero without loss of generality [7]. Then, we
find from (18)

�z = −ω0
(
1 −

√
1 − τ 2

c �2
y

)
, (19)

where

τc = F55

ω0F44
.

(It is seen that inequality |�z| � 2ω0 is fulfilled.) Finally, using (14), (16) and (19), we obtain

∂2θ

∂x∂τ
= −ω0βy

√
1 − τ 2

c

(
∂θ

∂τ

)2

sin θ. (20)

This equation is reduced to the famous sine-Gordon (SG) equation [9, 10] if τc = 0.
Equation (20) with τc 	= 0 is known as the modified SG (mSG) equation [19–22] and belongs
to the class of equations integrable by the IST method. Its first physical application was
found recently in [23], where (20) was shown to describe the propagation of electromagnetic
extremely short pulses through the anisotropic media. In [19–22], this equation was derived
in the course of mathematical study of the Bäcklund transformation of the SG equation.

Being integrable with the help of the IST method, (20) admits the zero curvature
representation

∂L̂

∂x
− ∂Â

∂τ
+ [L̂, Â] = 0, (21)

where matrices L̂ and Â are defined as given

L̂ = 1

2λ


 iλ�y

√
1 − τ 2

c �2
y − iτc�y√

1 − τ 2
c �2

y + iτc�y −iλ�y


 ,

Â = −ω0βy

2

(−iτc sin θ λ eiθ

λ e−iθ iτc sin θ

)
,

and λ is the spectral parameter. Equation (21) is nothing but the compatibility condition of
the following Lax pair:


∂ξ

∂τ
= L̂ξ,

∂ξ

∂x
= Âξ,

(22)

where ξ = ξ(λ, τ, x) = (ξ1, ξ2)
T .

To investigate the nonlinear dynamic of the transverse strain field components and effective
spins, we construct the soliton solutions of (20). It is well known that the multi-soliton
solutions of the integrable equation can be found using the algebraic methods. Here we apply
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the Darboux transformation (DT) technique [24]. Let ϕ = (ϕ1, ϕ2)
T be a solution of (22) with

λ = τp. The Lax pair (22) is covariant with respect to DT {ξ1, ξ2, θ} → {ξ̃1, ξ̃2, θ̃} of the form

ξ̃1 = (λξ1 − τpϕ1ξ2/ϕ2) exp[i(θ̃ − θ)/2],

ξ̃2 = (λξ2 − τpϕ2ξ1/ϕ1) exp[i(θ − θ̃ )/2], (23)

θ̃ = θ + i ln
τpϕ2

1 − τcϕ1ϕ2

τpϕ2
2 − τcϕ1ϕ2

.

This implies that relation (23) gives us new solution θ̃ of the mSG equation (20) if θ is its
known solution and ϕ is a solution of the Lax pair.

In the zero background case (i.e., θ = 0), we obtain from (23) the following expression
for the one-soliton solution of the mSG equation:

θ = 2 arccos
q − tanh χ√

�
,

where q = τc/τp, χ = (t − x/v)/τp,� = 1 − 2q tanh χ + q2. Velocity v of the soliton and
its free parameter τp defining the duration are connected by the relation

v−1 = a−1 + ω0βyτ
2
p.

The corresponding formula for y component of the transverse strain field is

�y = 2 sechχ

τp

1 − q tanh χ

�
. (24)

For ‘time area’ Ay ≡ ∫ ∞
−∞ �y dt of this component of the acoustic pulse, we find

Ay =
{±2π for |τp| > τc

0 for |τp| < τc.

The last formula indicates that the acoustic extremely short pulses are divided into two
families. The family with Ay = ±2π also exists for the SG equation and corresponds to
unipolar 2π pulses (kinks and antikinks). The pulses of the family with Ay = 0 are bipolar
0π pulses. Unlike the breathers of the SG equation (for them Ay = 0 as well), these pulses
are steady state. The solitons of this kind were called as neutral kinks in [23].

In the cubic crystal, one has |F55| = |F44|. Then |τp| < τc due to condition (1), and
neutral kinks exist only in such a crystal. In the crystals with tetragonal symmetry, both types
of the solitons are possible.

Let us discuss in detail the properties of the acoustic solitons. In the case |τp| >
√

2τc,
component �y (24) of the unipolar one-soliton solution has a single maximum, whose value is
smaller than 1/τc. Accompanying the dynamics of effective spins is very similar to that of the
SG equation: the leading edge of the pulse of y component inverts completely the populations
of the Zeeman sublevels, and the trailing one returns them to the initial state. The z component
is small as compared to ω0, and its role is insignificant.

Under τc < |τp| <
√

2τc, component �y has two symmetric peaks (see solid line in
figure 1(a)) with the largest possible amplitude 1/τc determined by (18). The peaks are
separated by the time interval

2|τp|arcsinh

√
q2

1 − q2
− 1.

The first peak inverts the populations of the spin sublevels, while the component �z grows
in amplitude and reaches the absolute value 2ω0 in the centre of the soliton (figures 1(b) and
(c)). The component �z has an asymmetry on polarity: it decreases the transition frequency
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(a)1

−1

cΩτ y

(b)
0

−2

Ω

ρ

χ

ω
z

0

(c)
1

0

11

1

2

2

1

1

2

Figure 1. Profiles of the components of the strain field and the population ρ11 for the one-soliton
pulses with τc < |τp| <

√
2τc (solid lines) and |τp| < τc (dotted lines).

(�z < 0) and shifts the Zeeman sublevels so that the ground sublevel becomes excited. On
account of this, the paramagnetic ions are in the ground state between the peaks. (The positions
of the spin sublevels 1 and 2 of the Kramers doublet under the pulse passage are pictured in
figure 1(c).) When the second peak has come, the z component vanishes reverting the mutual
position of the sublevels to the initial state. Finally, the second peak of the y component causes
the back transitions from the excited sublevel to the ground one.

When |τp| < τc and the interval between the peaks of the neutral kink surpasses its
duration, the dynamics of the strain fields and effective spins is similar to the second case
described above. The only difference is that the peaks of �y are opposite in sign. The time
interval between the peaks is

2|τp|arccosh

√
1 +

q2

q2 − 1
.

If we take duration of such a soliton to be shorter, then the peaks are brought closer together
and the degree of excitation of the paramagnetic ions decreases (see dotted lines in figure 1).

When |τp| → τc, the interval between the peaks grows indefinitely large, and the y

component (24) consists of a single peak with amplitude equal to 1/τc and with the absolute
value of time area Ay equal to π . This case stresses especially the role of the component �z
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of the acoustic pulses considered. The peak of �y inverts almost completely the population of
the spin sublevels. This state of the effective spins is unstable in the absence of the strain field.
But, the z component, whose amplitude tends to 2ω0, shifts the levels of the Kramers doublets
in such a manner that the energy of the excited sublevel becomes lesser than the energy of the
ground one. Owing to this, the state of effective spins after the passage of the y component
peak becomes stable.

The form of the acoustic solitons in the case f (τ) 	= 0 (see integral (18)) tends to their
form in the case f (τ) = 0 at t → ∞, since the pulse velocity v differs from linear velocity a
of the transverse waves. As follows from the previous consideration, this means in particular
that the amplitude of the pulses is bounded, and the component of the strain field parallel to
the external magnetic field has the asymmetry on polarity.

In this paper, we considered the propagation of the transverse acoustic extremely short
pulse through a paramagnetic crystal in a direction perpendicular to the external magnetic
field. It was shown that the dynamics of the strain field and effective spins is governed by
the modified sine-Gordon equation (20). The soliton solutions of this equation reveal strong
nonlinear coupling between the components of the acoustic pulse. As a result of this, the
behaviour of paramagnetic impurities and elastic fields during the interaction exhibits new
features.
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